Example 1:
A ruby throated hummingbird and a monarch butterfly travel similar paths across the Gulf of Mexico. The distances is just over 880 km . It takes the hummingbird 18.5 hours and the monarch butterfly 41.6 hours to cross the Gulf. Calculate each speed to the nearest hundredth. 2 decimal
Humming bird

$$
\begin{aligned}
& \frac{880 \mathrm{~km}}{18.5 \mathrm{hr}} \\
& =47.57 \mathrm{Km} / \mathrm{hr}
\end{aligned}
$$

$$
\frac{880 \mathrm{~km}}{41.6 \mathrm{hrs}}
$$

$=21.15 \mathrm{Km} / \mathrm{hr}$

Determine each rate:
a) Brandon runs 150 meters in 25 seconds.

$$
\frac{150 \mathrm{~m}}{25 s}=6 \mathrm{~m} / \mathrm{s}
$$

b) Kira earns $\$ 88.00$ for working 8 hours.

$$
\frac{\$ 88.00}{8 \mathrm{hr}}=\$ 11.00 / \mathrm{hr}
$$

c) Cat food costs $\$ 9.00$ for five cans.

$$
\frac{\$ 9.00}{5 \text { cans }}=\$ 1.80 / \mathrm{can}
$$

Unit Price
...a unit price is a unit rate that makes it easier to compare the cost of similar items.

Example:

$$
89.00 \text { five }
$$

- Brett went to the grocery store to buy his favorite brand of orange juice. He found the following container sizes and prices. $\$ 0.59$ for 250 mL , $\$ 1.09$ for 500 mL or $\$ 1.99$ for 1 L . Which container is the best buy?
$\frac{\$ 0.59}{250 \mathrm{~mL}}$
$\frac{\$ 1.09}{500 \mathrm{~mL}}$

$$
K=1000 \mathrm{~mL}
$$

=0.00236 /mL $=80,00218 / \mathrm{mL}$

15 IL.
This table show the price of different sized packages of mixed nuts.
a) What is the unit price per 100 gram for each package?

$$
\frac{\$ 2.19}{300 g}=\frac{\$ 0.73}{100 g} / \frac{\$ 3.09}{500 g}=\frac{\$ 1.03}{100 g}
$$

b) Which package is the best buy? Explain you thinking.

$$
\frac{7.8}{700}=\frac{0.69}{1009}
$$

Nut Package	Mass	Price
1	300 g	$\$ 2.19$
2	500 g	$\$ 309$
3	700 g	$\$ 4.83$

$$
\text { Package } 3 \text { is the best by! }
$$

