Unit 3: Kinematics in 2D

1 - Relative Velocity

In order to properly describe an object's motion we need to know...

Example: A man walks to the right with a velocity of $2 \mathrm{~m} / \mathrm{s}$ on a platform that moves with a velocity of $1 \mathrm{~m} / \mathrm{s}$ to the right.

a) What is the person's velocity relative to the platform?
$\mathrm{v}_{\text {person-platform }}=$ \qquad m / s
b) What is the person's velocity relative to the ground?

Reference frame:

$\mathrm{V}_{\text {person-ground }}=\mathrm{v}_{\text {platform }}+\mathrm{v}_{\text {person-platform }}$
$v_{\text {person-ground }}=1 \mathrm{~m} / \mathrm{s}+\frac{2}{\mathrm{~m} / \mathrm{s}} \mathrm{m} / \mathrm{s}$
$v_{\text {person-ground }}=3 \mathrm{~m}$

Example: You can throw a pie at $32 \mathrm{~m} / \mathrm{s}$. If you are standing on a train traveling $32 \mathrm{~m} / \mathrm{s}$ east and throw a pie forward what is its resultant (total) velocity?

Example: A bowling team on a train heads east at $15 \mathrm{~m} / \mathrm{s}$. A stationary observer watches them play as they pass. At what velocity would the following throws appear to be moving at?

Biff: Throws @ $12 \mathrm{~m} / \mathrm{s}$ East
Hank: Throws @ 18 mos East

Ralph: Throws @ $15 \mathrm{~m} / \mathrm{s}$ West

$$
\xrightarrow[V_{\text {Rap }} p_{h}=\left|S_{m}\right| s]{\stackrel{V_{\text {tran }}}{ }=\mid S_{m} I_{s}} \quad V_{t_{0} t_{a} \mid}=0
$$

Train A leaves Vancouver station traveling east at 90 . km / h at 9:00 am. At the same time train B leaves Montreal traveling west at $110 \mathrm{~km} / \mathrm{h}$. If the two stations are 4800 km .
a. At what time do they meet?
$V_{\text {rel }}=90 \mathrm{~km} / \mathrm{h}+110 \mathrm{kn} / \mathrm{h}=200 \mathrm{~km} / \mathrm{h}$
$V=\frac{d}{t} \quad t=\frac{d}{v}=\frac{4800 \mathrm{kn}_{n}}{200 \mathrm{k}_{\mathrm{n}} / \mathrm{h}}=24 \mathrm{~h}$
b. Where are they when they meet?

$$
\begin{aligned}
V_{A}=\frac{d_{A}}{t} \quad d_{A} & =V_{A} t=(90 \mathrm{~km} / \mathrm{h})(24 \mathrm{~h}) \\
& =2160 \mathrm{~km} E \text { of Vancouver }
\end{aligned}
$$

If the conductor of train A notices that is takes exactly 3.2 s for train B to pass it, what is the length of train B ?

$$
\begin{aligned}
V_{v e} & =200 \mathrm{~km} / \mathrm{h} \div 3.6 \\
& =55.56 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
d=v \cdot t
$$

$$
=(55.56 \mathrm{~m} / \mathrm{s})(3.2 \mathrm{~s})
$$

$$
=180 \mathrm{~m}
$$

